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1. Introduction 

The Large Hadron Collider (LHC) is widely expected to  be the Higgs 
boson discovery machine. In particular, the dominant channel for the pro- 
duction of a light Higgs particle at the LHC is gluon fusion gg + H X  [l]. 
The search strategies for the Higgs boson rely deeply on the knowledge of 
production characteristics, the transverse momentum (QT) of the produced 
boson being one of the most important quantities. In this talk we describe 
an application of the joint resummation formalism [2] to calculate transverse 
momentum distribution of Higgs bosons produced through the gluon fusion 
mechanism at the LHC. 

It is a general feature of perturbative calculations in QCD that close to a 
phase space boundary partonic hard-scattering cross sections acquire large 
logarithmic corrections. These corrections are related to soft and collinear 
gluon emission and arise from cancellations between virtual and real con- 
tributions at each order in perturbation theory. The threshold and recoil 
corrections are the two notable examples often discussed in this context. 
The threshold corrections of the form a: ln2n-1 (1 - z)/(l  - z )  become large 
when the partonic c.m. energy approaches the invariant mass Q of the pro- 
duced boson, z = Q2/S + 1. The recoil corrections, in turn, are of the 
form a: (Q2/Q$) and grow large if the transverse momentum carried 
by the produced boson is very small, QT << Q. Thus, sufficiently close to 
the phase-space boundary, i.e. in the limit of soft and/or collinear radia- 
tion, fixed-order perturbation theory i s  bound to  fail. A proper treatment 
of higher-order corrections in this limit requires resummation of logarithmic 
corrections to  all orders. 

In the Standard Model the leading (3(a:) process for Higgs boson pro- 
duction via gluon-gluon fusion proceeds through a heavy quark loop, with 
the top quark loop providing the most significant contribution. In the limit 
of large top mass, mt + 00, the Higgs coupling to  gluons through the top 
loop can be described by the effective ggH vertex [3]. This simplifying ap- 
proximation was shown to  be valid up to  a few percent accuracy in the case 
of NLO calculations [4]. The fixed-order predictions for the total production 
rate are currently known at the NNL (next-to-next-to-leading) order. Al- 
though not as large as the NLO corrections [3], the NNLO corrections were 
found to  be substantial, increasing the NLO predictions by around 30% [5] .  
Moreover, it was shown that the prevailing contribution to  these corrections 
corresponds to the soft and collinear gluon emission [6, 71, thus reinforcing 
the need for a careful treatment of logarithmic corrections to  all orders. 

The resummation techniques are well established both in the thresh- 
old [8, 91 and in the recoil [lo, 111 case for the Drell-Yan production-type 
processes. The Drell-Yan mechanism and the mechanism for Higgs boson 
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production through gluon-gluon fusion are similar. This makes it possi- 
ble t o  apply (after implementing necessary changes accounting for gluons, 
instead of quarks, in the initial state) the already developed resummation 
methods t o  Higgs boson production. The resummed predictions were ob- 
tained in [4, 121 for threshold resummation and in [13, 14, 15, 161 for recoil 
resummation. A joint, simultaneous treatment of the threshold and recoil 
corrections was first introduced in [2, 171. I t  relies on a novel refactorization 
of short-distance and long-distance physics at fixed transverse momentum 
and energy [a]. Similarly t o  standard threshold and recoil resummation, 
exponentiation of logarithmic corrections occurs in the impact parameter b 
space [ll], Fourier-conjugate t o  transverse momentum QT space as well as 
in the Mellin-N moment space [8, 91, conjugate t o  z space. The resulting 
expression respects energy and transverse momentum conservation, A full 
phenomenological analysis of 2 boson production at the Tevatron in the 
framework of joint resummation can be found in [18], whereas Higgs boson 
production at the LHC was studied in [19]. 

2. The jointly resummed cross section 

The general expression for the jointly resummed cross section [2], applied 
t o  Higgs boson production via gluon fusion, reads [19] 

where T = Q2/S,  mh is the mass of the Higgs boson, and m.a;6(Q2 - mi) 
denotes the lowest order partonic cross section for the process gg -+ H X  in 
the limit of large mt, with 

The function H contains the hard virtual part of the perturbativGcor- 
rections and up t o  ~ ( c v , )  is given by [3, 211 

Apart from a lower limit of integration, at the next-to-leading-logarithm 
(NLL) accuracy the form of the Sudakov factor E::(N, b, Q ,  p)  in the jointly 
resummed expression (1) is the same as for the recoil resummation [18]: 
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The functions A and B are perturbative series in a, and their coefficients 
can be determined by comparing fixed order predictions with an expansion 
of resummed result [21, 201. NLL accuracy requires using AP),  B p )  and 
A?) in Eq. (4): 

where CA = 3, CF = 4/3, TR = 1/2, and NF is the number of flavors. The 
higher order (needed at NNLL) coefficient B," is also known [all 

The quantity x ( N ,  b) appearing in the lower limit of integration in (4) 
is specific to joint resummation. The LL and NLL logarithmic terms in the 
threshold limit, N + 00 (at fixed b), and in the recoil limit b -+ 00 (at fixed 
N )  are correctly reproduced with the following choice of the form of x 

where is a constant and we define 

N = NeYE , 
b E bQeyE/2 , - 

with 3% the Euler constant. 
The functions C(Q, b, N ,  p, p ~ )  in Eq. (1) are given by: 

C ~ / H ( & ,  4 N,P, PF)  = ca/j (N7 a,(~u>) fjh ( N ,  Qlx ,  P F )  f i c / ~ ( N ,  P F )  . 
(10) 

j , k  

The product of parton distribution functions fh /H  at s c a 1 e . p ~ ~  and a matrix 
&jjk can be seen as corresponding to parton densities evaluated at the scale 
Q/x. The evolution from the scale p~ to Q / x  is accurate t o  NLL in x and 
represented by the matrix & ( N ,  Q/x ,  p ~ ) .  The origin and the structure 
of the evolution matrix & was discussed in detail in Ref. [lS, 191. The 
coefficients C,,j(N, as) have a structure of a perturbative series in a,, and 
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are determined in the same way as for recoil resummation, i.e. up t o  O(Q,), 

The expression (1) is formally accurate t o  the next-to-leading-logarithm 
(NLL) level. However, due t o  the large colour charge of the incoming gluons, 
the cross section exhibits increased sensitivity to the Sudakov logarithms. 
It is known for recoil resummation that the NNLL terms have a significant 
impact on numerical results. Motivated by this finding, we decide t o  include 
the NNLL terms containing the coefficient, in the way consistent with 
the recoil resummation. In our formalism we also include the O(a,) per- 
turbative expansions for the functions H and C,  which formally give NNLL 
contributions. As discussed in Ref. [22], the NNLL resummed cross sections 
are resummation scheme dependent, and the choice of the resummation 
scheme is reflected in the value of the coefficients and C(l). We 
exercise the freedom of the resummation scheme choice by demanding that  
the function H ,  calculated with a, taken at the scale Q, collects the hard 
virtual part of the NLO corrections. The Sudakov factor and the C coeffi- 
cients contain then only soft or collinear contributions. The values of 
and C(l) listed above are for this particular resummation scheme. 

By incorporating full evolution of parton densities the cross section (1) 
correctly includes also the leading Q: ln2n-1 (N)/N collinear non-soft terms 
to all orders. At the NLO, this can be seen by expanding jointly resummed 
cross section t o  O(a,) (here for illustration purposes only in the gg channel), 
integrated over QT 

w = a(') 5 { - 4 c A  In2 N + 8nbo In N + 11 + 3n2 
2n 

where &(N) = Cg1j-l = $(N + 1) + YE,  with $ the  digamma function. 
In the large N limit this gives 

which can be compared to the the large N limit of the NLO result in the 
Mellin space 
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The agreement between the expanded jointly resummed expression and the 
exact NLO result down to the 0(1/N) is clear. The mismatch in the con- 

coefficient and is a NNLL effect. A development of the joint formalism at 
the NNLL would eliminate this disagreement as well as provide a way to 
include other NNLL coefficients, most notably B(2) .  

stant r2 term between (14) and (15) originates from the value of the Cglg (1) 

2.1. Numerical results and discussion 
In order to have predictive power, the resummed expression (1) needs 

to  be supplemented by a definition of the inverse Mellin and Fourier trans- 
forms from N and b space. In the joint approach, the inverse integrals are 
both treated as contour integrals in the complex space of N and b. For the 
integrals to be well defined, the contours must not run into the Landau pole 
or singularities associated with the form of the function x. This procedure 
provides an unambigous definition of resummed perturbation theory with- 
out an introduction of additional dimensional scales and implies a functional 
form of non-perturbative corrections. We refer the reader to  Ref. [19] for a 
detailed discussion of the parametrization of the contours. 

The joint resummation formalism with the inverse transforms defined 
as contour integrals ensures that predictions can be obtained for any non- 
zero value of QT. This is not possible in the standard recoil approach 
without adding some non-perturbative term of the form -gb2 to the Sudakov 
exponent. However, for the purely technical reasons of numerical stability 
we also include such a factor in our jointly resummed cross section. The 
value of the g parameter, g = 1.67 GeV2, is adopted from the study in 
Ref. [24]. However, we checked that the dependence of the results at small 
QT on the value of g is negligible, in agreement with what was found for the 
case of pure b space resummation. At large QT, where the 1n(Q$/Q2) terms 
taken into account by resummation lose their importance, it is necessary 
to  match the resummed result with a fixed-order result. Here the jointly 
resummed ,result is matched to the 0(cvs) perturbative result [13], in the 
way described in [18]. 

The numerical results for the Higgs boson transverse momentum dis- 
tribution calculated in the joint resummation framework were obtained as- 
suming mh = 125 GeV, p = p~ = Q = m h  and using CTEQ5M [23] parton 
distribution functions. The parameter rl in the definition of x (7) is chosen 
to be rl = 1. We checked that the numerical dependence of the predictions 
on the value of 

Apart from the joint resummation predictions, in Fig. 1 we also show 
the recoil-only (i.e. x = b)  resummed result. At small to moderate QT,  the 
b space resummed prediction is slightly higher and broader than the one 
provided by the joint resummation but the difference is small. Consequently, 

is small [19]. 
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we conclude that the threshold effects are of .modest importance at these 
values of QT and the pure recoil resummation is fully applicable there. 

The QT-integrated joint cross section, by definition, is expected t o  return 
the threshold resummed result. Although it  does so formally up t o  NLL, 
numerically the integrated joint distribution returns a result which is N 10% 
lower than the threshold cross section. We find that this suppresion is caused 
by subleading terms included in the joint resummation, more specifically 
terms cc 1/(N - 1) in the expansion of the joint expression (13). These 
terms arise from our treatment of evolution in the coefficients C, cf. Eq. (10). 
They are important only in the small N limit and therefore not present in 
the threshold resummed expression. (However, i t  is interesting t o  observe 
that the NLO cross section in Mellin space contains the same subset of 
terms N l / (N-  1) as the expanded joint expression taken at 8 = 0, plus an 
additional subset of terms cc 1/(N - l)2. The numerical effects of the two 
subsets cancel almost entirely, leading t o  a relatively good approximation 
of the NLO cross section by the threshold resummed result.) The small N 
limit corresponds t o  the limit of small z = Q2/i < 1. Given partonic c.m. 
energies available at the LHC, the small z terms of the form a: ln(2n-1)(z)/z 
may indeed play a significant role for light Higgs production. These terms 
can be resummed on their own [25],  but their full inclusion in the joint 
formalism alongside the threshold and recoil corrections requires further 
work. 
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Fig. 1. Transverse momentum distribution for Higgs production at the LHC in the 
framework of joint resummation and of “pUle-&~” resummation. 
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